Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract.

نویسندگان

  • Xhavit Zogaj
  • Werner Bokranz
  • Manfred Nimtz
  • Ute Römling
چکیده

Citrobacter spp., Enterobacter spp., and Klebsiella spp. isolated from the human gut were investigated for the biosynthesis of cellulose and curli fimbriae (csg). While Citrobacter spp. produced curli fimbriae and cellulose and Enterobacter spp. produced cellulose with various temperature-regulatory programs, Klebsiella spp. did not show pronounced expression of those extracellular matrix components. Investigation of multicellular behavior in two Citrobacter species and Enterobacter sakazakii showed an extracellular matrix, cell clumping, pellicle formation, and biofilm formation associated with the expression of cellulose and curli fimbriae. In those three strains, the csgD-csgBA region and the cellulose synthase gene bcsA were conserved. PCR screening for the presence of csgD, csgA and bcsA revealed that besides Klebsiella pneumoniae and Klebsiella oxytoca, all species investigated harbored the genetic information for expression of curli fimbriae and cellulose. Since Citrobacter spp., Enterobacter spp., and Klebsiella spp. are frequently found to cause biofilm-related infections such as catheter-associated urinary tract infections, the human gut could serve as a reservoir for dissemination of biofilm-forming isolates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract.

Escherichia coli colonizes the gastrointestinal tract of humans; however, little is known about the features of commensal strains. This study investigated whether expression of the biofilm extracellular matrix components cellulose and curli fimbriae is found among commensal isolates. Fifty-two E. coli strains were isolated from faecal samples and, as a control, 24 strains from urinary tract inf...

متن کامل

Impact of biofilm matrix components curli fimbriae and cellulose on interaction of commensal Escherichia coli with gastrointestinal cell line HT-29 Running title: interaction of commensal Escherichia coli with HT-29 cell line

Commensal Escherichia coli form biofilms at body temperature by expressing the extracellular matrix components curli fimbriae and cellulose. The role of curli fimbriae and cellulose in the interaction of commensal E. coli with the intestinal epithelial cell line HT-29 was investigated. Expression of curli fimbriae by the typical commensal isolate E. coli TOB1 caused adherence and internalizatio...

متن کامل

Uropathogenic Escherichia coli Modulates Immune Responses and Its Curli Fimbriae Interact with the Antimicrobial Peptide LL-37

Bacterial growth in multicellular communities, or biofilms, offers many potential advantages over single-cell growth, including resistance to antimicrobial factors. Here we describe the interaction between the biofilm-promoting components curli fimbriae and cellulose of uropathogenic E. coli and the endogenous antimicrobial defense in the urinary tract. We also demonstrate the impact of this in...

متن کامل

Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli.

In enterobacteria, the CsgD protein activates production of two extracellular structures: thin aggregative fimbriae (curli) and cellulose. While curli fibres promote biofilm formation and cell aggregation, the evidence for a direct role of cellulose as an additional determinant for biofilm formation is not as straightforward. The MG1655 laboratory strain of Escherichia coli only produces limite...

متن کامل

The Ability of Cellulose Polysaccharide and Curli Pili Production in Uropathogenic Escherichia Coli and its Association with Biofilm Formation Intensity

Abstract        Background and Objective: the Formation of urinary infection by uropathogenic E.coli needs   numerous virulence factors and biofilm formation is among these factors. Bacteria that form biofilms express phenotype traits that appear according to the bacteria type. Cellulose is an important compound on the outside of E.coli causing bacte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 71 7  شماره 

صفحات  -

تاریخ انتشار 2003